Long-term dynamics of uranium reduction/reoxidationunder low sulfate conditions
نویسندگان
چکیده
The biological reduction and precipitation of uranium in groundwater has the potential to prevent uranium migration from contaminated sites. Although previous research has shown that uranium bioremediation is maximized during iron reduction, little is known on how long-term iron/uranium reducing conditions can be maintained. Questions also remain about the stability of uranium and other reduced species after a long-term biostimulation scheme is discontinued and oxidants (i.e., oxygen) re-enter the bioreduced zone. To gain further insights into these processes, four columns, packed with sediment containing iron as Fe-oxides (mainly Al-goethite) and silicate Fe (Fe-containing clays), were operated in the laboratory under field-relevant flow conditions to measure the long-term (>200 day) removal efficiency of uranium from a simulated groundwater during biostimulation with an electron donor (3 mM acetate) under low sulfate conditions. The biostimulation experiments were then followed by reoxidation of the reduced sediments with oxygen. During biostimulation, Fe(III) reduction occurred simultaneously with U(VI) reduction. Both Fe-oxides and silicate Fe(III) were partly reduced, and silicate Fe(III) reduction was detected only during the first half of the biostimulation phase while Fe-oxide reduction occurred throughout the whole biostimulation period. Mössbauer measurements indicated that the biogenic Fe(II) precipitate resulting from Fe-oxide reduction was neither siderite nor FeS0.09 (mackinawite). U(VI) reduction efficiency increased throughout the bioreduction period, while the Fe(III) reduction gradually decreased with time. Effluent Fe(II) concentrations decreased linearly by only 30% over the final 100 days of biostimulation, indicating that bioreducible Fe(III) in the sediment was not exhausted at the termination of the experiment. Even though Fe(III) reduction did not change substantially with time, microorganisms not typically associated with Fe(III) and U(VI) reduction (including methanogens) became a significant fraction of the total microbial population during long-term biostimulation, meaning that most acetate was utilized for biological processes other than Fe(III) and U(VI) reduction. This corresponds with an electron donor/acceptor mass balance showing that the amount of Fe(III), U(VI) and SO4 2 reduced accounted for very little (<2%) of the acetate consumed after day 104 of bioreduction. Selected columns were reoxidized after 209 days by discontinuing acetate addition and purging the influent media with a gas containing 20% oxygen. Uranium reoxidation occurred rapidly with a very large uranium spike exiting the column (7–8 times higher than the original influent concentration) which resulted in 61% of the precipitated uranium resolubilized and transported out of the column after 21 days and virtually all of the uranium being removed by day 122. During the first 21 days of reoxidation, the Fe(III) and U(VI) reducing microbial population, as measured by quantitative PCR, remained at pre-oxidation levels (even though the gene transcripts that represent the methanogen population decreased by 99%) indicating that short-term disruptions in biostimulation (equipment failure, etc.) may not negatively affect the uranium reducing microbial population. 2008 Elsevier Ltd. All rights reserved. 0016-7037/$ see front matter 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.gca.2008.05.040 * Corresponding author. Fax: +1 609 258 2799. E-mail address: [email protected] (P.R. Jaffé). www.elsevier.com/locate/gca Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 3603–3615
منابع مشابه
Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.
There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron-reducing conditions and to decrease upon commencement of sulfate-reducing conditi...
متن کاملEffects of supplemental organic carbon on long-term reduction and reoxidation of uranium
Bioreduction of mobile uranyl(VI) (UO2 ) to sparingly soluble uraninite (U(IV)O2(s)) is a strategy that has been proposed for in situ remediation of uranium contaminated aquifers. That strategy faces the challenge of reoxidation of uraninite, with consequent release of soluble uranyl when the stimulation of U(VI) bioreduction is terminated. We tested the effects of supplemental organic carbon (...
متن کاملStimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer.
The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series ...
متن کاملBiogeochemical Signals from Deep Microbial Life in Terrestrial Crust
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low suppl...
متن کاملMicrobial Transformations of Uranium Complexed with Organic and Inorganic Ligands
Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the ...
متن کامل